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Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption
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We analyze a nonlinear fractional diffusion equation with absorption by employing fractional spatial deriva-
tives and obtain some more exact classes of solutions. In particular, the diffusion equation employed here
extends some known diffusion equations such as the porous medium equation and the thin film equation. We
also discuss some implications by considering a diffusion coefficientD(x,t)5D(t)uxu2u (uPR) and a drift
force F52k1(t)x1kaxuxua21. In both situations, we relate our solutions to those obtained within the maxi-
mum entropy principle by using the Tsallis entropy.
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I. INTRODUCTION

Recently the nonlinear and fractional diffusion equatio
have received a lot of attention. In fact, they have been
plied in several situations such as percolation of ga
through porous media@1#, thin saturated regions in porou
media @2#, a standard solid-on-solid model for surfa
growth, thin liquid films spreading under gravity@3#, model-
ing of nonMarkovian dynamical processes in protein foldi
@4#, relaxation to equilibrium in a system~such as polymer
chains and membranes! with long temporal memory@5#, and
anomalous transport in disordered systems@6#. A representa-
tive nonlinear diffusion equation that is usually employed
the above context is

]

]t
r~x,t !5

]

]x HD~x,r!
]

]x
r~x,t !J . ~1!

For the particular case,D(x,r)5Dnrn21 is sometimes re-
ferred to as theporous medium equationand has been inten
sively studied in the literature@7,8# as well as its connection
with the nonextensive statistics@9#. We may also have the
high-order diffusionlike equation such as the thin film equ
tion @10#

]

]t
r~x,t !52D ]

]x H @r~x,t !#g
]3

]x3
r~x,t !J , ~2!

which contains a fourth-order derivative. It can be applied
describe the lubrication models for thin viscous film
spreading droplets, and Hele-Shaw cells@11#. In addition to
the context mentioned above, the fractional equations h
also been employed to investigate the situations related to
anomalous diffusion@12–14#. By unifying the spatial frac-
tional diffusion equation and the porous medium equati
we have that

]

]t
r~x,t !5D ]m

]uxum
@r~x,t !#n, ~3!
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where]m/]uxum is a Riemann-Liouville fractional derivative
@15#. For the particular casen51, the Levy distributions are
the solution to Eq.~3!. For the casenÞ1, solutions and the
connection between Eq.~3! and the nonextensive statistic
have been investigated in Ref.@17#.

The physical situations mentioned in above essenti
concern anomalous diffusion of the correlated type~both
subdiffusion and superdiffusion; see Ref.@18#, and refer-
ences therein! or of the Lévy type ~superdiffusion; see Ref
@19#, and references therein!. Anomalous correlated diffusion
has a finite second moment^x2&}ts (s.1, s51, and 0
,s,1, respectively, correspond to superdiffusion, norm
diffusion, and subdiffusion;s50 basically corresponds to
localization!. The second type is essentially characterized
Lévy distributions and, consequently, it has no finite seco
moment, i.e.̂ x2& diverges.

Due to the broadness of the physical situations that th
previous equations are able to describe, it is interesting
know more about equations related to various types
anomalous diffusion, their properties, solutions, and conn
tions with extensive@20# or nonextensive@9# statistics. In
this direction, we have, for example, complex systems s
as the displacement of a viscous fluid by a less viscous
in a petroleum reservoir, which requires a more general
proach in order to take the nonlinear behavior of the interf
into account, and also the fractal or multifractal characte
tics of porous rocks in which the oil is immersed. In partic
lar, the geostatistics of these reservoirs are well describe
a fractional Brownian motion and fractional Levy motio
@21#. In order to accomplish the above situations in a unifi
scenario, we dedicate the present work to establish s
classes of solutions of a general nonlinear fractional dif
sion equation with absorption; we also investigate conn
tions with the usual or generalized thermostatistics. M
precisely, we focus our attention on the following gener
ized equation:

]

]t
r~x,t !5

]

]uxu H D~x,t !@r~x,t !#g
]m21

]uxum21
@r~x,t !#nJ

2
]

]x
$F~x!r~x,t !%1a~ t !@r~x,t !#m8, ~4!
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wheren,g,u,m8,mPR, D(x,t)5D(t)uxu2u is a~dimension-
less! diffusion coefficient,F(x)[2dV(x)/dx is a ~dimen-
sionless! external force~drift! associated with the potentia
V(x), anda(t) plays the role of an absorbent@a(t),0# „or
source @a(t).0#… rate related to a reaction process. T
presence of the reaction term as that in the above equa
has been studied in several situations. Here, for example
may recall the so-called one-species coagulation, that isA
1A→0 or mA→ lA (m. l ), catalytic processes in regula
heterogeneous, or disordered systems@22#. Another example
is an irreversible first-order reaction of the transported s
stance so that the rate of removal isar @23#. This extra term
may also appear when a tracer undergoing radioactive d
is transported through a porous medium@24# and in heat flow
involving heat production@25#. In particular, in these situa
tions and in solute transport through adsorbent samp
which are usually proportional to the concentration in t
solution, Eq.~4! applies.

For a(t)50, it can be verified that*2`
` dxr(x,t) is time

independent~hence, ifr is normalized att50, it will remain
so for ever!. Indeed, if we write the equation in the] tr
5]xJ form and assume the boundary conditionsJ(6`,t)
→0, it can be shown that*2`

` dxr(x,t) is a constant of
motion. Following Ref.@17#, we use the Riemann-Liouville
operator@12,13,15,16# and we work with thepositive xaxis.
Later on, we will use symmetry to extend the results to
entire real axis~we are working, in other words, with
]m21/]uxum21). Also, we employ the initial condition
r(x,0)5d(x) and the boundary conditionr(x→6`,t)
→0. Note that Eq.~4! recovers, for (m,g,u,n)5(2,0,0,1),
the standard Fokker-Planck equation in the presence
drift. The particular caseF(x)50 ~no drift!, D(x,t)5const
and (m,u,g)5(2,0,0) has been considered by Spohn@8#.
Other situations of (m,u,g)5(2,0,0) have also been consid
ered in Refs.@26,27#. The (u,g)5(0,0) case without drift
was investigated in Ref.@17#. Our present discussion in
volves extensions of these cases taking a wide variety
situations into account by employing the nonlinear diffusi
equation, the fractional diffusion equation and the mixing
these cases. In Sec. II, we consider several situations for
~4! as well as the connection of the solutions with the on
obtained within the maximum entropy principle. Later on,
Sec. III, we present our conclusions.

II. DIFFUSION EQUATION WITH ABSORPTION

Let us start by emphasizing that an essential point of
discussion is the scaled solutions of the type

r~x,t !5
1

F~ t !
r̃F x

F~ t !G ~5!

for Eq. ~4! which satisfy the initial and the boundary cond
tions. For example, to reobtain the case discussed by Sp
@8#, by using this ansatz, we insert Eq.~5! into Eq. ~4! with
(g,u,m)5(0,0,2), F(x)50, a(t)50, and D(x,t)5D
5const. This procedure leads to
05110
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2F~ t !nḞ~ t !
d

dz
@zr̃~z!#5D d2

dz2
@ r̃~z!#n, ~6!

with z[uxu/F(t). A solution to this equation may be ob
tained if we choose

@F~ t !#n

D
d

dt
F~ t !5k, ~7!

hence

F~ t !5@~11n!Dkt#1/(11n), ~8!

where we have adopted the solution that satisfiesF(0)50.
This yields

r~x,t !5
1

F~ t !
expqF2

k

2n S x

F~ t ! D
2G . ~9!

The constantk can be obtained from the normalization co
dition *2`

` dxr(x,t)51. Furthermore,q522n and expq(x)
[@11(12q)x#1/(12q) is theq-exponential function that arise
within the nonextensive thermostatistical formalism by op
mizing, under appropriate constraints, the entropic fo
@9,28#

Sq5

12E dx@r~x,t !#q

q21
. ~10!

Before continuing our discussion on the nonlinear fra
tional diffusion equation, it is convenient to make some co
ments about the nonextensive entropySq . This entropy
~Tsallis entropy! was employed for the first time in connec
tion with a nonextensive statistical mechanics by Tsallis@28#.
It has a real parameterq that informs us the degree of non
extensivity and in the limitq→1 the usual entropy is recov
ered. By using Eq.~10!, several situations have been inve
tigated @9# focusing formal developments as well a
applications.

Let us now extend the above result, Eq.~9!, for a spatial
and time dependent diffusion coefficientD(x,t), i.e., we as-
sume D(x,t)5D(t)uxu2u (uPR), by considering a drift
term F(x,t)52k1(t)x and a source~or absorbent! term
a(t)r(x,t). In this case, the solution to Eq.~4! is given by
r(x,t)5exp@*0

t dt̃a( t̃)#r̂(x,t), wherer̂(x,t) can be expressed
in terms of the stretchedq exponential

r̂~x,t !5
1

F̃~ t !
expqF2

k9

n~21u! S uxu

F̃~ t !
D 21uG , ~11!

with
9-2
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F̃~ t !

F̃~0!
5expF2E

0

t

d t̃k1~ t̃ !GF11
~11n1u!k9

@F̃~0!#11n1u

3E
0

t

d t̃D~ t̃ !expH 2E
0

t̃
dt8@~12n!a~ t8!

2~11n1u!k1~ t8!#J G 1/(11n1u)

, ~12!

wherek9, which plays the same role ask in Eq. ~9!, may be
fixed by the normalization condition. We are interested in
physical solutions that decay at long distances; conseque
it must beu.22. Furthermore, we verify, forD(t) con-
stant, that the casesu1n.1, u1n51, andu1n,1, re-
spectively, correspond to the subdiffusive, normal, and
perdiffusive regimes for „k1(t),a(t)…5(0,0), i.e. ^x2&
}t2/(11n1u).

We can also extend solution~9! by assuming nowF(x)
52k1(t)x1kaxuxua21 and D(x,t)5Duxu2u without the
source term. We do not know what happens in the gen
(a,u,n) arbitrary case, but there is a special situation
which the scaled solution of the type indicated in Eq.~5! is
still valid. This special case corresponds toa5q2u22, i.e.,
a1u1n50. If this condition is satisfied, we obtain

r~x,t !5
1

F̄~ t !
expqF2

1

n H k8

21u S uxu

F̄~ t !
D 21u

2kaln22qS uxu

F̄~ t !
D J G ,

F̄~ t !5expF2E
0

t

d t̃k1~ t̃ !GF @F̄~0!#11n1u1~11n1u!k8D

3E
0

t

d t̃expF ~11n1u!E
0

t̃
dt8k1~ t8!G G1/(11n1u)

,

~13!

where lnqx[(x12q21)/(12q) is theq-logarithm function~the
inverse function of theq exponential! and k8 is a constant
that plays a role analogous tok in Eq. ~9!, and is to be
determined through the normalization condition. As a l
comment, let us mention that the distributions obtain
above are precisely of the type that is obtained by optimiz
Sq with the constraint̂ ^O(uxu)&&q5const, where thenor-
malized q-expectation value is defined as

^^O~ uxu!&&q[F E dxO~ uxu!@p~x!#qG Y F E dx@p~x!#qG .
~14!

In this context,O is essentially the argument of expq@•••# in
the optimalr(x) „r(x)}expq@•••#….

Now, we analyze the following~vanishing drift! equation:
05110
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]

]t
r~x,t !5

]

]uxu H D~ t !uxu2u@r~x,t !#g
]m21

]uxum21
@r~x,t !#nJ

1a~ t !r~x,t !, ~15!

which unifies the corresponding ones appearing in R
@17,29–31#. The procedure employed here is essentially
same as used in Ref.@17#; besides, the case discussed the
corresponds toD(t) constant, (u,g)5(0,0) anda(t)50. In
this direction, we take the generic property,

dd

dxd
G~ax!5ad

dd

dz̄d
G~ z̄! ~dPR!, ~16!

with z̄5ax into account. This basic property holds not on
for the ordinary derivative, but also for all fractional oper
tors, in particular, for the Riemann-Liouville one. Thus, su
stitutingr(x,t)5exp@*0

t dta(t)#r̂(x,t) in Eq. ~15! and employ-
ing Eq. ~5! for r̂(x,t), we obtain

2@F~ t !#j22
d

dt
F~ t !5 k̄D~ t !expF2~12n2g!

3E
0

t̃
dt8a~ t8!G , ~17!

wherej5n1m1u1g, k̄ is an arbitrary constant, and

d

dzH z2u@ r̃~z!#g
dm21

dzm21
@ r̃~z!#nJ 5 k̄

d

dz
@zr̃~z!#. ~18!

By solving Eq.~17!, we find

F~ t !5F @F~0!#j211k8E
0

t

d t̃D~ t̃ !expF2~12n2g!

3E
0

t̃
dt8a~ t8!G G1/(j21)

, ~19!

with k85(12j) k̄. And making an integration in Eq.~18!,
we have that

z2u@ r̃~z!#g
dm21

dzm21
@ r̃~z!#n5 k̄zr̃~z!1C, ~20!

whereC is another arbitrary constant. Also, we use the f
lowing general result:

0Dx
d@xa~a1bx!b#5ad

G@a11#

G@a112d#
xa2d~a1bx!b2d,

~21!

with 0Dx
d[dd/dxd, d[a1b11, a.21, and b1a,

21. By definingg(x)[xa/n(a1bx)b/n and l[a(121/n)
2d, and rearranging the indices, Eq.~21! can be rewritten as
follows:
9-3
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0Dx
d@g~x!#n5

G@a11#

G@a112d#
adxlg~x!. ~22!

Using this property in Eq.~20! and, for simplicity, choosing
C50, we find

a

n
5

~m1u!~11m1u!

~122m2u!~12g!
,

b

n
52

~12m!~11m1u!

~122m2u!~12g!
,

n5
~22m!~12g!

11m1u
. ~23!

Note that the above results recover those obtained in
@17# for u50 andg50 and in Ref.@31# for g50. These
results allow us to write the solution in the form

r̃~x,t !5
N

F~ t ! F z(m1u)

~11bz!(12m)G (11m1u)/[(122m2u)(12g)]

,

~24!

with

N5F k̄
G~2b!

G~a11!G
1/(n1g21)

and z[
uxu

F~ t !
, ~25!

whereb is an arbitrary constant~to be taken, later on, as61
according to the specific solutions to be studied!.
r

05110
f.

We can extend the previous achievement by incorpora
a linear driftF(x)52k1(t)x into Eq.~15!. In this case,r̃(z)
remains unchanged and we need only to change Eq.~19! to

F~ t !5expF2E
0

t

dtk1~ t !GF @F~0!#j21

1 k̃E
0

t

d t̃D~ t̃ ! expH E
0

t̃
dt8@~j21!k1~ t8!

2~12n2g!a~ t8!#J G1/(j21)

, ~26!

in which k̃5(12j) k̄.
Several regions can be considered in this case. For s

plicity, we considera(t)50 and illustrate two of them:
2`,m,212uuu2ugu with u>0 and 0<g,1, and 0
,m,1/2 with 0<u,1/22m and 0<g,1/3. Let us start by
considering the region2`,m,212uuu2ugu. Without
loss of generality, we can chooseb521. Thus, the normal-
ization condition

NE
21

1 F z(m1u)(11m1u)

~12z!(12m)(11m1u)G 1/[(122m2u)(12g)]

dz51

~27!

implies
N5

GS 22
11m1u

12g D
2GS 11

~m1u!~11m1u!

~122m2u!~12g! DGS ~m21!~11m1u!

~122m2u!~12g!
11D ~28!
e

~see Fig. 1! and the second moment is^x2&}@F(t)#2. Let us
now illustrate the 0,m,1/2 region~whereb51). In this
situation, the normalization implies

N5

GS ~12m!~11m1u!

~122m2u!~12g! D
2GS 11

~m1u!~11m1u!

~122m2u!~12g! DGS m1u1g

12g D ~29!

~see Fig. 2!.
We return to Eq.~4! to consider two different particula

cases, namelym50 andm51 for a(t)50. Them52 case
was addressed in Ref.@29#. Let us start withm50 and arbi-
trary n. The corresponding equation is

]

]t
r~x,t !5

]

]uxu HD~ t !uxu2u@r~x,t !#gE
0

x

@r~y,t !#ndyJ .

~30!
To solve it, let us go back to Eq.~18! and, after some sim-
plifications, we obtain

k̄z11ur̃~z!5@ r̃~z!#gE
0

z

dz̄@ r̃~ z̄!#n, ~31!

whose solution is given by

r̃~z!}
1

z(11u)/(12g)
~11 C̃z12n(11u)/(12g)!1/(12n2g),

~32!

whereC̃ is a constant.
Let us now address them51 case. It corresponds to th

equation

]

]t
r~x,t !5

]

]uxu $D~ t !uxu2u@r~x,t !#g1n%. ~33!
9-4



ra
r-

e

lly;
,

is

EXACT SOLUTIONS TO NONLINEAR NONAUTONOMOUS . . . PHYSICAL REVIEW E 67, 051109 ~2003!
To obtain its solution, it is convenient to go back to Eq.~18!.
It follows that

k̄zr̃~z!5z2u@ r̃~z!#g1n1 C̄, ~34!

which implicitly determinesr̃(z), whereC̄ is a constant.
Now, we investigate the scaling behavior for the gene

casem8Þ1 in Eq. ~15! by considering the absence of exte
nal force and, for simplicity,a(t)5a5const andD(x,t)
5Duxu2u, i.e., we analyze the following equation:

]

]t
r~x,t !5

]

]uxu H Duxu2u@r~x,t !#g
]m21

]uxum21
@r~x,t !#nJ

1a@r~x,t !#m8. ~35!

To do this we consider another ansatz instead of Eq.~5!, i.e.,
we employ the following ansatz:r(x,t)5w(t)P(z) with z
5f(t)x. Replacing this in Eq.~35! we obtain the functions
w(t) andf(t) as

w~ t !5@11~12m8!at#1/(12m8),

f~ t !5a1/(u1m)@11~12m8!at# (m82n2g)/[(12m8)(u1m)] .
~36!

FIG. 1. Behavior ofF(t) r̃(x,t) versusx/F(t), which illus-
trates Eq.~24! with typical values form, u, andg satisfyingm,
212uuu2ugu, u>0, and 0<g,1. We notice that the distribution
vanishes at the abscissa equal to61, and remains zero outside th
interval.
05110
l

Therefore, Eq.~35! is reduced to an ordinary equation on th
variablez:

P~z!1
m82n2g

u1m
z

d

dz
@P~z!#

5
d

duzu H Duzu2u@P~z!#g
dm21

duzum21
@P~z!#nJ 1@P~z!#m8.

~37!

The above equation is complicated to be solved analytica
however, thenth moment of this distribution, when defined
is given by

^x2n&5F E dxx2nr~x,t !G Y F E dxr~x,t !G
5f~ t !22nF E dzz2nP~z!G Y F E dzP~z!G}f~ t !22n

~38!

with

^x2n11&50, ~39!

yielding

^~x2^x&!2&}f~ t !22;t2(n1g2m8)/[(12m8)(u1m)] ~40!

FIG. 2. Behavior ofF(t) r̃(x,t) versusx/F(t), which illus-
trates Eq.~24! with typical values form, u, and g satisfying 0
,m,1/2, 0<u,1/22m, and 0<g,1/3.
9-5
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for long time and (12m8)a.0. Note, in the above equa
tion, that the diffusion can be subdiffusive normal, or sup
diffusive, depending on the value of 2(n1g2m8)/@(1
2m8)(u1m)#, to be less, equal or greater than 1.

Let us finally mention a connection between the resu
obtained for the fractional cases here and the solutions
arise from the optimization of the nonextensive entropy@9#.
These distributions do not coincide for an arbitrary value
x. However, the comparison of the asymptotic behavi
(uxu→`) enables us to identify the type of tails. By iden
fying the behavior exhibited in Eq.~24! with the asymptotic
behavior 1/uxu2/(q21) that appears in Ref.@9# for the entropic
problem, we obtain

q5
31m22g1u

11m1u
. ~41!

This relation recovers, foru50 andg50, the one already
established in Ref.@17# and extends that obtained in Re
@31#.
us

-

.

or

u

er
J
d

re

d
ed

s
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III. CONCLUSIONS

In summary, we have worked on a one-dimensional g
eralized diffusion equation@Eq. ~4!# in several situations by
considering some space and time dependent classes of e
nal drifts and diffusion coefficients. We have shown that
admits exact solutions where space scales with a functio
time. In particular, we have extended the results obtaine
Refs.@17,26,27,29–32#. Whenever appropriate, we have al
discussed the connection with nonextensive statistics,
viding ~through identification of the exact or at lea
asymptotic behaviors! the relation between the entropic in
dexq and the exponents appearing in the diffusion equati
Finally, we hope that the results obtained here may be
plied to physical systems exhibiting nontrivial forms
anomalous diffusion.
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